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1. Introduction

The computation of scattering amplitudes in superstring theory has a long history and has
led to new understanding in this important area of theoretical physics. Using the Ramond-
Neveu-Schwarz formalism [l P] developed in the 707s, it is relatively straightforward to
compute superstring tree amplitudes involving external bosons, however, the computation
of tree amplitudes involving external fermions is much more complicated. The computation
of fermionic tree amplitudes was considerably simplified using techniques developed in the
80’s by Friedan, Martinec and Shenker [f], which led to the interpretation of superstring
theory as a two-dimensional superconformal field theory. For loop amplitudes involving
external fermions, however, the methods of Friedan, Martinec and Shenker are extremely
cumbersome and have not been developed beyond one-loop. Furthermore, even in the
absence of external fermions, complications caused by the need to sum over spin structures
has made it difficult to compute scattering amplitudes above one-loop.

For two-loop amplitudes with four massless external bosons, these complications were
recently overcome in a series of papers by D’Hoker and Phong [[], and related papers by
Iengo and Zhu et al [f. Since the final expression for the four-point two-loop amplitude
is remarkably simple, it is natural to ask if there is a more efficient computational method
than the RNS formalism.

One alternative approach to computing superstring scattering amplitudes uses the
Green-Schwarz formalism [[{] which is manifestly spacetime supersymmetric and does not
require summing over spin structures. However, because this formalism has only been
quantized in light-cone gauge, it has only been possible to compute four-point tree and
one-loop amplitudes using this formalism.

Five years ago, a new super-Poincaré covariant formalism for the superstring was
introduced which uses pure spinors as worldsheet ghosts []. Last year, it was shown how
to compute multiloop amplitudes using this formalism and various vanishing theorems were
proven [§] which are related to finiteness and S-duality. In this paper, this formalism will be
used to compute massless four-point two-loop amplitudes in ten-dimensional superspace.
The computation is much simpler than the RNS computations of [, ] and automatically
includes both external bosonic and external fermionic states. When all external states are
bosonic, the resulting amplitude has recently been shown [[] to coincide with the RNS
result of [{] and [{].



As shown in [f], certain vanishing theorems related to finiteness are easily proven in
the super-Poincaré covariant formalism by counting fermionic zero modes. To obtain the
required number of fermionic zero modes for massless multiloop amplitudes, one needs
at least four external states. And when there are precisely four external massless states,
all fermionic worldsheet variables contribute only through their zero modes. This makes
it relatively easy to evaluate four-point massless multiloop amplitudes and the four-point
two-loop amplitude will be explicitly computed here. Higher-loop massless four-point am-
plitudes will hopefully be discussed in a later paper.

2. Four-point two-loop computation

As discussed in [}, the four-point two-loop amplitude for the Type IIB superstring is
computed using the prescription:
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signifies the left-right product, 7p are the Teichmuller parameters associated

where | |?
to the Beltrami differentials pp(up), bp, is the picture-raised b ghost, Zp, and Z; are
the picture-raising operators, Y, are the picture-lowering operators, and U (T)(tT) are
the dimension (1,1) closed string vertex operators for the four external states. Using the

notation of [§], bp, satisfies {Q,bg, (up,zp)} = T(up)Zp,(zp) where
1
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Ny and J are the Lorentz and ghost-number currents for the pure spinors, and BE"™ and
Clo are constant two-forms and spinors. As explained in [§], changing the choices for B5"
and Cf, is a BRST-trivial operation which does not affect the scattering amplitude.

For massless external states,
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where the Type IIB supergravity vertex operator has been written as the left-right product
of two super-Yang-Mills vertex operators. Using the convention D, = 80% + %kzm(wmﬂ)a,
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are the spinor and vector gauge superfields and
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are the spinor and vector superfield-strengths of super-Yang-Mills, where (a,,,£®) are the
on-shell (gluon, gluino) and --- involves a,, and £“ with higher powers of k and 6. The
NS-NS, NS-R, R-NS, and R-R Type IIB supergravity vertex operators can be obtained
from (R.3) by considering the terms proportional to a,,an, amgﬁ, £%ay, and 50‘56 respectively.

At genus two, there are 16 fermionic zero modes for #¢ and 32 fermionic zero modes
for d,. As in tree amplitudes, eleven of the 8 zero modes can come from the Yo’s and
the remaining five 6% zero modes will come from the external vertex operators. For the d,,
zero modes, nineteen d, zero modes can come from the seventeen Zpg’s and two Z;’s, so
thirteen d, zero modes must come from the three EB ghosts and the four external vertex
operators.

From the construction of EB in , one finds that EB contains terms with a maximum
of four d’s, but does not contain any terms with three d’s. Since each vertex operator can
contribute at most one d, zero mode, the only contribution from ZB comes from the terms
with four d’s. One can show that all such terms are proportional to

Hp(2) = Brn B™ (d(2)y™""d(2)) (d(2)7pqrd(2)) 8'(B* Nt(2)) (2.6)

where ¢'(x) denotes (%5(:6) and is defined to satisfy xd'(z) = —d(z). Since each of the three
bp ghosts contains ¢'(BN) dependence, three of the vertex operators must contribute an
Ny zero mode to remove the derivative from the delta functions. Furthermore, the fourth
vertex operator must contribute the last of the 32 d, zero modes.

After performing the functional integration over the worldsheet nonzero modes, the
amplitude prescription of (R.1) gives
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where the factor of il ZT&Z:IIZQIEI;G“T’W)) comes from the functional integration over

the ten a’s, Q is the period matrix, G(t7,ty) is the usual scalar Green’s function, and
[[DC)[DB][DM][DN] are measure factors for the pure spinor zero modes which are defined
in [f]. The partition function vanishes in this formalism since the contribution from the
ten 2™ and 32 (d,, 0%) variables cancels the contribution from the 22 pure spinor variables.

To evaluate (R.7), first use the rules described in [§] to integrate over the zero modes

of Ny, and d, and over the choices of B,,,. This produces the expression
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where A(u,v) = ¢“P

we(u)wp(v) and we(z) for C = 1,2 are the two holomorphic one-
forms.

To derive (R.§) from (R.7), one uses that each Hp,(up) has +2 conformal weight,
has no poles on the surface, and has zeros when up, = up,. The unique such function is
proportional to A(ui,u2)A(ug,us)A(us,u). Similarly, the picture-raising operators have
zero conformal weight and no poles, so they leave no contribution. And the external vertex
operators have +1 conformal weight with no poles, so they contribute

hEPEF o (t) )wp (tg)wi (t3)wr (ts) (2.9)

for some constant h¢PEF . Since the zero modes associated with w; and wy appear sym-

metrically, h¢PEF

vanishes unless it has two 1 indices and two 2 indices, and is invariant
under the exchange of the two 1 indices with the two 2 indices.
Moreover, Lorentz invariance implies that the three remaining A’s must be contracted

with the indices of the external superfields as
NPXOX (57 5 FS)O)ED (0)FSD ()W 6) (2.10)

up to permutations of the external superfields. This contraction can be shown to be unique
by decomposing the (Wick-rotated) SO(10) representations into SU(5) x U(1) representa-
tions. Under SU(5) x U(1), W< decomposes into [W3, W [ab] We,] and F,, decomposes
32 -3
into [F_[Fa; ], ., F_[qy] where a,b =1 to 5 and the subscript is the U(1) charge. Choosing
A% such that Xg is the only nonzero component, one can easily verify that
2
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is the unique SU(5) x U(1) invariant term, which is written in SO(10)-invariant notation
as (ET0),
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with (ym"m”)aﬁ(Fﬁ,{Fg) — ES%)LFIS;)) = 0 implies by symmetry arguments that one can
replace hCPEF with ¢CEePF in (B.9). Note that by choosing the Teichmuller parameters
to be the three elements of the period matrix Q¢ p, one can write
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Finally, the integration over [[DC][DA] [d'%¢ in (R.§) is easily performed using the
rules of [{] to obtain
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The four-point two-loop amplitude of (2.19) is remarkably simple. When all external

where E/" ,,, is defined such that 7] (T-H557  =o0.

states are chosen in the NS-NS sector, it has recently been shown in [fJ] to coincide with
the RNS formula of [, {]. Work is currently in progress on extending these results to
higher-loop four-point amplitudes.
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