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1. Introduction

The computation of scattering amplitudes in superstring theory has a long history and has

led to new understanding in this important area of theoretical physics. Using the Ramond-

Neveu-Schwarz formalism [1, 2] developed in the 70’s, it is relatively straightforward to

compute superstring tree amplitudes involving external bosons, however, the computation

of tree amplitudes involving external fermions is much more complicated. The computation

of fermionic tree amplitudes was considerably simplified using techniques developed in the

80’s by Friedan, Martinec and Shenker [3], which led to the interpretation of superstring

theory as a two-dimensional superconformal field theory. For loop amplitudes involving

external fermions, however, the methods of Friedan, Martinec and Shenker are extremely

cumbersome and have not been developed beyond one-loop. Furthermore, even in the

absence of external fermions, complications caused by the need to sum over spin structures

has made it difficult to compute scattering amplitudes above one-loop.

For two-loop amplitudes with four massless external bosons, these complications were

recently overcome in a series of papers by D’Hoker and Phong [4], and related papers by

Iengo and Zhu et al [5]. Since the final expression for the four-point two-loop amplitude

is remarkably simple, it is natural to ask if there is a more efficient computational method

than the RNS formalism.

One alternative approach to computing superstring scattering amplitudes uses the

Green-Schwarz formalism [6] which is manifestly spacetime supersymmetric and does not

require summing over spin structures. However, because this formalism has only been

quantized in light-cone gauge, it has only been possible to compute four-point tree and

one-loop amplitudes using this formalism.

Five years ago, a new super-Poincaré covariant formalism for the superstring was

introduced which uses pure spinors as worldsheet ghosts [7]. Last year, it was shown how

to compute multiloop amplitudes using this formalism and various vanishing theorems were

proven [8] which are related to finiteness and S-duality. In this paper, this formalism will be

used to compute massless four-point two-loop amplitudes in ten-dimensional superspace.

The computation is much simpler than the RNS computations of [4, 5] and automatically

includes both external bosonic and external fermionic states. When all external states are

bosonic, the resulting amplitude has recently been shown [9] to coincide with the RNS

result of [4] and [5].
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As shown in [8], certain vanishing theorems related to finiteness are easily proven in

the super-Poincaré covariant formalism by counting fermionic zero modes. To obtain the

required number of fermionic zero modes for massless multiloop amplitudes, one needs

at least four external states. And when there are precisely four external massless states,

all fermionic worldsheet variables contribute only through their zero modes. This makes

it relatively easy to evaluate four-point massless multiloop amplitudes and the four-point

two-loop amplitude will be explicitly computed here. Higher-loop massless four-point am-

plitudes will hopefully be discussed in a later paper.

2. Four-point two-loop computation

As discussed in [8], the four-point two-loop amplitude for the Type IIB superstring is

computed using the prescription:

A =

∫
d2τ1d

2τ2d
2τ3

〈∣∣∣∣∣

3∏

P=1

∫
d2uP µP (uP )̃bBP

(uP , zP )

20∏

P=4

ZBP
(zP )

2∏

R=1

ZJ(vR)
11∏

I=1

YCI
(yI)

∣∣∣∣∣

2 4∏

T=1

∫
d2tT U (T )(tT )

〉
, (2.1)

where | |2 signifies the left-right product, τP are the Teichmuller parameters associated

to the Beltrami differentials µP (uP ), b̃BP
is the picture-raised b ghost, ZBP

and ZJ are

the picture-raising operators, YCI
are the picture-lowering operators, and U (T )(tT ) are

the dimension (1, 1) closed string vertex operators for the four external states. Using the

notation of [8], b̃BP
satisfies {Q, b̃BP

(uP , zP )} = T (uP )ZBP
(zP ) where

ZBP
=

1

2
Bmn(λγmnd)δ(BpqNpq), ZJ = λαdαδ(J), YCI

= CIαθαδ(CIβλβ), (2.2)

Nmn and J are the Lorentz and ghost-number currents for the pure spinors, and Bmn
P and

CIα are constant two-forms and spinors. As explained in [8], changing the choices for Bmn
P

and CIα is a BRST-trivial operation which does not affect the scattering amplitude.

For massless external states,

U (T ) = eik·x

(
∂θαA(T )

α (θ) + ΠmA(T )
m (θ) + dαW (T )α(θ) +

1

2
NmnF (T )

mn (θ)

)

(
∂θ

β
A

(T )
β (θ) + Π

p
A

(T )
p (θ) + dβW

(T )β
(θ) +

1

2
N

pq
F

(T )
pq (θ)

)
(2.3)

where the Type IIB supergravity vertex operator has been written as the left-right product

of two super-Yang-Mills vertex operators. Using the convention Dα = ∂
∂θα + 1

2km(γmθ)α,

Aα(θ) =
1

2
am(γmθ)α −

1

3
(ξγmθ)(γmθ)α + · · · and Am(θ) = am − (ξγmθ) + · · · (2.4)

are the spinor and vector gauge superfields and

W α(θ) = ξα −
1

4
k[man](γ

mnθ)α + · · · and Fmn = k[man] − k[m(ξγn]θ) + · · · (2.5)
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are the spinor and vector superfield-strengths of super-Yang-Mills, where (am, ξα) are the

on-shell (gluon, gluino) and · · · involves am and ξα with higher powers of k and θ. The

NS-NS, NS-R, R-NS, and R-R Type IIB supergravity vertex operators can be obtained

from (2.3) by considering the terms proportional to aman, amξ
β
, ξαan and ξαξ

β
respectively.

At genus two, there are 16 fermionic zero modes for θα and 32 fermionic zero modes

for dα. As in tree amplitudes, eleven of the θα zero modes can come from the YC ’s and

the remaining five θα zero modes will come from the external vertex operators. For the dα

zero modes, nineteen dα zero modes can come from the seventeen ZB ’s and two ZJ ’s, so

thirteen dα zero modes must come from the three b̃B ghosts and the four external vertex

operators.

From the construction of b̃B in [8], one finds that b̃B contains terms with a maximum

of four d’s, but does not contain any terms with three d’s. Since each vertex operator can

contribute at most one dα zero mode, the only contribution from b̃B comes from the terms

with four d’s. One can show that all such terms are proportional to

HB(z) = BmnBqr (d(z)γmnpd(z)) (d(z)γpqrd(z)) δ′(BstNst(z)) (2.6)

where δ′(x) denotes ∂
∂x

δ(x) and is defined to satisfy xδ′(x) = −δ(x). Since each of the three

b̃B ghosts contains δ′(BN) dependence, three of the vertex operators must contribute an

Nmn zero mode to remove the derivative from the delta functions. Furthermore, the fourth

vertex operator must contribute the last of the 32 dα zero modes.

After performing the functional integration over the worldsheet nonzero modes, the

amplitude prescription of (2.1) gives

A =

∫
d2τ1d

2τ2d
2τ3

4∏

T=1

∫
d2tT

exp(−
∑4

T,U=1 kT · kUG(tT , tU ))

(det ImΩ)5

∣∣∣∣∣

∫
[DC][DB][Dλ][DN ]

∫
d16θd32d

3∏

P=1

∫
d2uP µP (uP )HBp

(uP )

20∏

P=4

ZBP
(zP )

2∏

R=1

ZJ(vR)

11∏

I=1

YCI
(yI)

4∏

T=1

(dα(tT )W (T )α(θ) +
1

2
Nmn(tT )F (T )

mn (θ))

∣∣∣∣∣

2

(2.7)

where the factor of
exp(−

P

4

T,U=1
kT ·kUG(tT ,tU ))

(det ImΩ)5
comes from the functional integration over

the ten x’s, Ω is the period matrix, G(tT , tU ) is the usual scalar Green’s function, and∫
[DC][DB][Dλ][DN ] are measure factors for the pure spinor zero modes which are defined

in [8]. The partition function vanishes in this formalism since the contribution from the

ten xm and 32 (dα, θα) variables cancels the contribution from the 22 pure spinor variables.

To evaluate (2.7), first use the rules described in [8] to integrate over the zero modes

of Nmn and dα and over the choices of Bmn. This produces the expression

A =

∫
d2τ1d

2τ2d
2τ3

4∏

T=1

∫
d2tT

exp(−
∑4

T,U=1 kT · kUG(tT , tU ))

(det ImΩ)5
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∣∣∣∣∣

∫
[DC][Dλ]

∫
d16θ

3∏

P=1

∫
d2uP µP (uP )∆(u1, u2)∆(u2, u3)∆(u3, u1)

11∏

I=1

YCI
(yI) λαλβλγ(γmnpqr)αβγs

γδ

(F (1)
mn(θ)F (2)

pq (θ)F (3)
rs (θ)W (4)δ(θ) ∆(t1, t3)∆(t2, t4) + permutations of 1234)

∣∣∣∣∣

2

(2.8)

where ∆(u, v) = εCDωC(u)ωD(v) and ωC(z) for C = 1, 2 are the two holomorphic one-

forms.

To derive (2.8) from (2.7), one uses that each HBP
(uP ) has +2 conformal weight,

has no poles on the surface, and has zeros when uP1
= uP2

. The unique such function is

proportional to ∆(u1, u2)∆(u2, u3)∆(u3, u1). Similarly, the picture-raising operators have

zero conformal weight and no poles, so they leave no contribution. And the external vertex

operators have +1 conformal weight with no poles, so they contribute

hCDEF ωC(t1)ωD(t2)ωE(t3)ωF (t4) (2.9)

for some constant hCDEF . Since the zero modes associated with ω1 and ω2 appear sym-

metrically, hCDEF vanishes unless it has two 1 indices and two 2 indices, and is invariant

under the exchange of the two 1 indices with the two 2 indices.

Moreover, Lorentz invariance implies that the three remaining λ’s must be contracted

with the indices of the external superfields as

λαλβλγ(γmnpqr)αβγs
γδ F (1)

mn(θ)F (2)
pq (θ)F (3)

rs (θ)W (4)δ(θ) (2.10)

up to permutations of the external superfields. This contraction can be shown to be unique

by decomposing the (Wick-rotated) SO(10) representations into SU(5) × U(1) representa-

tions. Under SU(5) × U(1), W α decomposes into [W+
5

2

,W 1

2
[ab],W

a
− 3

2

] and Fmn decomposes

into [F
[ab]
+2 , F b

0a, F−2[ab]] where a, b = 1 to 5 and the subscript is the U(1) charge. Choosing

λα such that λ+
5

2

is the only nonzero component, one can easily verify that

(λ+
5

2

)3F
(1)
−2[ab]F

(2)
−2[cd]F

(3)
−2[ef ]W

(4)f

− 3

2

εabcde (2.11)

is the unique SU(5) × U(1) invariant term, which is written in SO(10)-invariant notation

as (2.10).

Also, λαλβλγ(γmnpqr)αβγs
γδ(F

(1)
mnF

(2)
pq F

(3)
rs + F

(2)
mnF

(3)
pq F

(1)
rs + F

(3)
mnF

(1)
pq F

(2)
rs ) = 0 together

with (γmnpqr)αβ(F
(1)
mnF

(2)
pq − F

(2)
mnF

(1)
pq ) = 0 implies by symmetry arguments that one can

replace hCDEF with εCEεDF in (2.9). Note that by choosing the Teichmuller parameters

to be the three elements of the period matrix ΩCD, one can write

∫
d2τ1d

2τ2d
2τ3|

3∏

P=1

∫
d2uP µP (uP )∆(u1, u2)∆(u2, u3)∆(u3, u1)|

2 =

∫
d2Ω11d

2Ω12d
2Ω22.
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Finally, the integration over
∫

[DC][Dλ]
∫

d16θ in (2.8) is easily performed using the

rules of [8] to obtain

A =

∫
d2Ω11d

2Ω12d
2Ω22

4∏

T=1

∫
d2tT

exp(−
∑4

T,U=1 kT · kUG(tT , tU ))

(det ImΩ)5

∣∣∣∣∣(γ
mnpqr)αβγs

γδ

(∫
d5θ

)αβγ

(2.12)

(F (1)
mn(θ)F (2)

pq (θ)F (3)
rs (θ)W (4)δ(θ) ∆(t1, t3)∆(t2, t4) + permutations of 1234)

∣∣∣∣∣

2

where (∫
d5θ

)αβγ

= (T−1)αβγ
ρ1...ρ11

ερ1...ρ16

(
∂

∂θ

)

ρ12

· · ·

(
∂

∂θ

)

ρ16

(2.13)

and (T−1)αβγ
ρ1...ρ11

is the γ-matrix traceless part of

ερ1...ρ16
(γm)αρ12(γn)βρ13(γp)γρ14(γmnp)

ρ15ρ16 .

In other words,

(T−1)αβγ
ρ1...ρ11

= ερ1...ρ16
(γm)αρ12(γn)βρ13(γp)γρ14(γmnp)

ρ15ρ16 + γ(αβ
m Eγ)m

ρ1...ρ11
(2.14)

where E
γm
ρ1...ρ11

is defined such that γm
αβ(T−1)αβγ

ρ1...ρ11
= 0.

The four-point two-loop amplitude of (2.12) is remarkably simple. When all external

states are chosen in the NS-NS sector, it has recently been shown in [9] to coincide with

the RNS formula of [4, 5]. Work is currently in progress on extending these results to

higher-loop four-point amplitudes.
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